nature immunology

Postprandial macrophage-derived IL-1 β stimulates insulin, and both synergistically promote glucose disposal and inflammation

Erez Dror¹, Elise Dalmas^{1,6}, Daniel T Meier^{1,6}, Stephan Wueest², Julien Thévenet³, Constanze Thienel¹, Katharina Timper¹, Thierry M Nordmann¹, Shuyang Traub¹, Friederike Schulze¹, Flurin Item², David Vallois⁴, Francois Pattou³, Julie Kerr-Conte³, Vanessa Lavallard⁵, Thierry Berney⁵, Bernard Thorens⁴, Daniel Konrad², Marianne Böni-Schnetzler^{1,6} & Marc Y Donath^{1,6}

The deleterious effect of chronic activation of the IL-1 β system on type 2 diabetes and other metabolic diseases is well documented. However, a possible physiological role for IL-1 β in glucose metabolism has remained unexplored. Here we found that feeding induced a physiological increase in the number of peritoneal macrophages that secreted IL-1 β , in a glucose-dependent manner. Subsequently, IL-1 β contributed to the postprandial stimulation of insulin secretion. Accordingly, lack of endogenous IL-1 β signaling in mice during refeeding and obesity diminished the concentration of insulin in plasma. IL-1 β and insulin increased the uptake of glucose into macrophages, and insulin reinforced a pro-inflammatory pattern via the insulin receptor, glucose metabolism, production of reactive oxygen species, and secretion of IL-1 β mediated by the NLRP3 inflammasome. Postprandial inflammation might be limited by normalization of glycemia, since it was prevented by inhibition of the sodium–glucose cotransporter SGLT2. Our findings identify a physiological role for IL-1 β and insulin in the regulation of both metabolism and immunity.